Implementing a MMC/SD/SDIO stack using CAM framework(Part 2)
Hi, In the next part lets look at other files which makes up the SDIO stack within mmccam framework. Please have a look at previous part for more info: http://81.4.107.225/wordpress/index.php/2018/03/19/implementing-a-mmc-sd-sdio-stack-using-cam-framework/
mmc_sdio.c
sdio_fill_mmcio_rw_direct is basically a wrapper for CMD_52 that's needed to read/write directly into mmc register R5. Remember that register R5 in mmc, is used for RCA(Relative card address) management. It's right time now to talk about different command types of SD/MMC/SDIO:
CMD_53 is of ac type. where address of 8bit opcode is provided by adr,
Note:- For those who don't understand open drain mode,
Output pins can be configured in 3 ways,
[caption id="" align="alignright" width="272"] Source: https://os.mbed.com/media/uploads/tbjazic/05outputs.png[/caption]
Open drain is power efficient and Push pull mode is very fast!! so, SD card initialization id done in open drain mode and then push-pull mode takes over during cmd/data transfer.
Input Pins can be connected in 4 ways:
Now, to understand the above function, one should know about all the macros. Below, is the file to refer to in that case:
Now, look at SD_IO_RW_DIRECT its a class 9 command type for directly read and write in SDIO card case. Then, there is SD_IO_RW_FUNC ( #define SD_IO_RW_FUNC(x) (((x) & 0x7) << 28) ) it takes a uint8 type value extracts it's 7th bit and shift that bit to 28 position. then, SD_IO_RW_ADR ( #define SD_IO_RW_ADR(x) (((x) & 0x1FFFF) << 9) ) takes a 32 bit address takes it's first 16 its shift it by 9 bit i.e [25:9] and sends it to SD card to take set these 16 bits as it's RCA. SD_IO_RW_WR sets 1 at 31 position which indicates write operation. SD_IO_RW_RAW sets 1 at 27 position indicating raw data to be exchanged. SD_IO_RW_DAT takes 8 bit of data and put it in beginning of the packet . #define MMC_RSP_R5 (MMC_RSP_PRESENT | MMC_RSP_CRC | MMC_RSP_OPCODE) MMC_RSP_R5 sets the CRC and opcode of the command. MMC_CMD_AC shows that it's an address only command no data will be transferred.
sdio_parse_mmcio_rw_direct function is pretty straight forward, it's used to parse the response header indicating any CRC error or any other error reported by mmc card.
mmc_xpt.c
First two structure and character array are just a list of different functions that can be performed on mmc and SDIO card as of now.
Then we have mmc_dev_async function which as explained in previous post, is used to handle any asynchronous interrupt from CAM bus, in case of hot plug/hot unplug. It detects the device, and registers it accordingly on CAM bus.
Notice, here the keyword 'LUN' it refers to Logical Unit Number a storage device has. So, CAM_TARGET_WILDCARD and CAM_LUN_WILDCARD makes sure that device is a valid storage/IO device.
mmc_scan_lun basically check the Logical Unit Numbers of the device. CAM_LUN_WILDCARD only checks whether LUN == 0 or not. Each device has LUN = 0 even if it has multiple logical units , it's a bit confusing, but it looks like device registers other LUNs only after one of it's LUN gets attached. Source: here
mmc_action() is pretty straightforward. It calls xpt_action() after handling several standard cases. It also calls mmc_scan_lun if needed.
mmc_announce_periph is called upon confirmation of connection to any new device. notice that it creates a CCB and then initializes it with xpt_action.
Then, mmcprobe_register registers a new device on the CAM bus. only after registration, it can be associated with a CCB.
Next, important function is mmcprobe_start
Notice the switch case statement here, which converts a I/O command to it's SCSI equivalent. That is with just the name of the command it associates all the register value corresponding to it.
Few other supporting files are left. I'll update this post with there details as well
References:
mmc_sdio.c
+void sdio_fill_mmcio_rw_direct(union ccb *ccb, uint8_t f, uint8_t wr, uint32_t adr, uint8_t *data) {
+ struct ccb_mmcio *mmcio;
+
+ CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
+ ("sdio_fill_mmcio(f=%d, wr=%d, adr=%02x, data=%02x)\n", f, wr, adr, (data == NULL ? 0 : *data)));
+ mmcio = &ccb->mmcio;
+
+ mmcio->cmd.opcode = SD_IO_RW_DIRECT;
+ mmcio->cmd.arg = SD_IO_RW_FUNC(f) | SD_IO_RW_ADR(adr);
+ if (wr)
+ mmcio->cmd.arg |= SD_IO_RW_WR | SD_IO_RW_RAW | SD_IO_RW_DAT(*data);
+ mmcio->cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
+ mmcio->cmd.data->len = 0;
+}
sdio_fill_mmcio_rw_direct is basically a wrapper for CMD_52 that's needed to read/write directly into mmc register R5. Remember that register R5 in mmc, is used for RCA(Relative card address) management. It's right time now to talk about different command types of SD/MMC/SDIO:
- broadcast commands (bc), no response
- broadcast commands with response (bcr) (Note: No open drain on SD card)
- addressed (point-to-point) commands (ac), no data transfer on DAT lines
- addressed (point-to-point) data transfer commands (adtc), data transfer on DAT lines
CMD_53 is of ac type. where address of 8bit opcode is provided by adr,
Note:- For those who don't understand open drain mode,
Output pins can be configured in 3 ways,
[caption id="" align="alignright" width="272"] Source: https://os.mbed.com/media/uploads/tbjazic/05outputs.png[/caption]
- open drain - a transistor connects to low and nothing else
- open drain, with pull-up - a transistor connects to low, and a resistor connects to high
- push-pull - a transistor connects to high, and a transistor connects to low (only one is operated at a time)
Open drain is power efficient and Push pull mode is very fast!! so, SD card initialization id done in open drain mode and then push-pull mode takes over during cmd/data transfer.
Input Pins can be connected in 4 ways:
- pull-up - a resistor connected to high
- pull-down - a resistor connected to low
- pull-up and pull-down - both a resistor connected to high and a resistor connected to low (only useful in rare cases).
- Schmitt triggered input mode
Now, to understand the above function, one should know about all the macros. Below, is the file to refer to in that case:
/*
* This file contains the register definitions for the mmc and sd buses.
* They are taken from publicly available sources.
*/
struct mmc_data;
struct mmc_request;
struct mmc_command {
uint32_t opcode;
uint32_t arg;
uint32_t resp[4];
uint32_t flags; /* Expected responses */
#define MMC_RSP_PRESENT (1ul << 0) /* Response */
#define MMC_RSP_136 (1ul << 1) /* 136 bit response */
#define MMC_RSP_CRC (1ul << 2) /* Expect valid crc */
#define MMC_RSP_BUSY (1ul << 3) /* Card may send busy */
#define MMC_RSP_OPCODE (1ul << 4) /* Response include opcode */
#define MMC_RSP_MASK 0x1ful
#define MMC_CMD_AC (0ul << 5) /* Addressed Command, no data */
#define MMC_CMD_ADTC (1ul << 5) /* Addressed Data transfer cmd */
#define MMC_CMD_BC (2ul << 5) /* Broadcast command, no response */
#define MMC_CMD_BCR (3ul << 5) /* Broadcast command with response */
#define MMC_CMD_MASK (3ul << 5)
/* Possible response types defined in the standard: */
#define MMC_RSP_NONE (0)
#define MMC_RSP_R1 (MMC_RSP_PRESENT | MMC_RSP_CRC | MMC_RSP_OPCODE)
#define MMC_RSP_R1B (MMC_RSP_PRESENT | MMC_RSP_CRC | MMC_RSP_OPCODE | MMC_RSP_BUSY)
#define MMC_RSP_R2 (MMC_RSP_PRESENT | MMC_RSP_136 | MMC_RSP_CRC)
#define MMC_RSP_R3 (MMC_RSP_PRESENT)
#define MMC_RSP_R4 (MMC_RSP_PRESENT)
#define MMC_RSP_R5 (MMC_RSP_PRESENT | MMC_RSP_CRC | MMC_RSP_OPCODE)
#define MMC_RSP_R5B (MMC_RSP_PRESENT | MMC_RSP_CRC | MMC_RSP_OPCODE | MMC_RSP_BUSY)
#define MMC_RSP_R6 (MMC_RSP_PRESENT | MMC_RSP_CRC | MMC_RSP_OPCODE)
#define MMC_RSP_R7 (MMC_RSP_PRESENT | MMC_RSP_CRC | MMC_RSP_OPCODE)
#define MMC_RSP(x) ((x) & MMC_RSP_MASK)
uint32_t retries;
uint32_t error;
#define MMC_ERR_NONE 0
#define MMC_ERR_TIMEOUT 1
#define MMC_ERR_BADCRC 2
#define MMC_ERR_FIFO 3
#define MMC_ERR_FAILED 4
#define MMC_ERR_INVALID 5
#define MMC_ERR_NO_MEMORY 6
#define MMC_ERR_MAX 6
struct mmc_data *data; /* Data segment with cmd */
struct mmc_request *mrq; /* backpointer to request */
};
/*
* R1 responses
*
* Types (per SD 2.0 standard)
* e : error bit
* s : status bit
* r : detected and set for the actual command response
* x : Detected and set during command execution. The host can get
* the status by issuing a command with R1 response.
*
* Clear Condition (per SD 2.0 standard)
* a : according to the card current state.
* b : always related to the previous command. reception of a valid
* command will clear it (with a delay of one command).
* c : clear by read
*/
#define R1_OUT_OF_RANGE (1u << 31) /* erx, c */
#define R1_ADDRESS_ERROR (1u << 30) /* erx, c */
#define R1_BLOCK_LEN_ERROR (1u << 29) /* erx, c */
#define R1_ERASE_SEQ_ERROR (1u << 28) /* er, c */
#define R1_ERASE_PARAM (1u << 27) /* erx, c */
#define R1_WP_VIOLATION (1u << 26) /* erx, c */
#define R1_CARD_IS_LOCKED (1u << 25) /* sx, a */
#define R1_LOCK_UNLOCK_FAILED (1u << 24) /* erx, c */
#define R1_COM_CRC_ERROR (1u << 23) /* er, b */
#define R1_ILLEGAL_COMMAND (1u << 22) /* er, b */
#define R1_CARD_ECC_FAILED (1u << 21) /* erx, c */
#define R1_CC_ERROR (1u << 20) /* erx, c */
#define R1_ERROR (1u << 19) /* erx, c */
#define R1_CSD_OVERWRITE (1u << 16) /* erx, c */
#define R1_WP_ERASE_SKIP (1u << 15) /* erx, c */
#define R1_CARD_ECC_DISABLED (1u << 14) /* sx, a */
#define R1_ERASE_RESET (1u << 13) /* sr, c */
#define R1_CURRENT_STATE_MASK (0xfu << 9) /* sx, b */
#define R1_READY_FOR_DATA (1u << 8) /* sx, a */
#define R1_SWITCH_ERROR (1u << 7) /* sx, c */
#define R1_APP_CMD (1u << 5) /* sr, c */
#define R1_AKE_SEQ_ERROR (1u << 3) /* er, c */
#define R1_STATUS(x) ((x) & 0xFFFFE000)
#define R1_CURRENT_STATE(x) (((x) & R1_CURRENT_STATE_MASK) >> 9)
#define R1_STATE_IDLE 0
#define R1_STATE_READY 1
#define R1_STATE_IDENT 2
#define R1_STATE_STBY 3
#define R1_STATE_TRAN 4
#define R1_STATE_DATA 5
#define R1_STATE_RCV 6
#define R1_STATE_PRG 7
#define R1_STATE_DIS 8
/* R4 response (SDIO) */
#define R4_IO_NUM_FUNCTIONS(ocr) (((ocr) >> 28) & 0x3)
#define R4_IO_MEM_PRESENT (0x1<<27)
#define R4_IO_OCR_MASK 0x00fffff0
/*
* R5 responses
*
* Types (per SD 2.0 standard)
*e : error bit
*s : status bit
*r : detected and set for the actual command response
*x : Detected and set during command execution. The host can get
* the status by issuing a command with R1 response.
*
* Clear Condition (per SD 2.0 standard)
*a : according to the card current state.
*b : always related to the previous command. reception of a valid
* command will clear it (with a delay of one command).
*c : clear by read
*/
#define R5_COM_CRC_ERROR (1u << 15)/* er, b */
#define R5_ILLEGAL_COMMAND (1u << 14)/* er, b */
#define R5_IO_CURRENT_STATE_MASK (3u << 12)/* s, b */
#define R5_IO_CURRENT_STATE(x) (((x) & R5_IO_CURRENT_STATE_MASK) >> 12)
#define R5_ERROR (1u << 11)/* erx, c */
#define R5_FUNCTION_NUMBER (1u << 9)/* er, c */
#define R5_OUT_OF_RANGE (1u << 8)/* er, c */
struct mmc_data {
size_t len; /* size of the data */
size_t xfer_len;
void *data; /* data buffer */
uint32_t flags;
#define MMC_DATA_WRITE (1UL << 0)
#define MMC_DATA_READ (1UL << 1)
#define MMC_DATA_STREAM (1UL << 2)
#define MMC_DATA_MULTI (1UL << 3)
struct mmc_request *mrq;
};
struct mmc_request {
struct mmc_command *cmd;
struct mmc_command *stop;
void (*done)(struct mmc_request *); /* Completion function */
void *done_data; /* requestor set data */
uint32_t flags;
#define MMC_REQ_DONE 1
#define MMC_TUNE_DONE 2
};
/* Command definitions */
/* Class 0 and 1: Basic commands & read stream commands */
#define MMC_GO_IDLE_STATE 0
#define MMC_SEND_OP_COND 1
#define MMC_ALL_SEND_CID 2
#define MMC_SET_RELATIVE_ADDR 3
#define SD_SEND_RELATIVE_ADDR 3
#define MMC_SET_DSR 4
#define MMC_SLEEP_AWAKE 5
#define IO_SEND_OP_COND 5
#define MMC_SWITCH_FUNC 6
#define MMC_SWITCH_FUNC_CMDS 0
#define MMC_SWITCH_FUNC_SET 1
#define MMC_SWITCH_FUNC_CLR 2
#define MMC_SWITCH_FUNC_WR 3
#define MMC_SELECT_CARD 7
#define MMC_DESELECT_CARD 7
#define MMC_SEND_EXT_CSD 8
#define SD_SEND_IF_COND 8
#define MMC_SEND_CSD 9
#define MMC_SEND_CID 10
#define MMC_READ_DAT_UNTIL_STOP 11
#define MMC_STOP_TRANSMISSION 12
#define MMC_SEND_STATUS 13
#define MMC_BUSTEST_R 14
#define MMC_GO_INACTIVE_STATE 15
#define MMC_BUSTEST_W 19
/* Class 2: Block oriented read commands */
#define MMC_SET_BLOCKLEN 16
#define MMC_READ_SINGLE_BLOCK 17
#define MMC_READ_MULTIPLE_BLOCK 18
#define MMC_SEND_TUNING_BLOCK 19
#define MMC_SEND_TUNING_BLOCK_HS200 21
/* Class 3: Stream write commands */
#define MMC_WRITE_DAT_UNTIL_STOP 20
/* reserved: 22 */
/* Class 4: Block oriented write commands */
#define MMC_SET_BLOCK_COUNT 23
#define MMC_WRITE_BLOCK 24
#define MMC_WRITE_MULTIPLE_BLOCK 25
#define MMC_PROGARM_CID 26
#define MMC_PROGRAM_CSD 27
/* Class 6: Block oriented write protection commands */
#define MMC_SET_WRITE_PROT 28
#define MMC_CLR_WRITE_PROT 29
#define MMC_SEND_WRITE_PROT 30
/* reserved: 31 */
/* Class 5: Erase commands */
#define SD_ERASE_WR_BLK_START 32
#define SD_ERASE_WR_BLK_END 33
/* 34 -- reserved old command */
#define MMC_ERASE_GROUP_START 35
#define MMC_ERASE_GROUP_END 36
/* 37 -- reserved old command */
#define MMC_ERASE 38
#define MMC_ERASE_ERASE 0x00000000
#define MMC_ERASE_TRIM 0x00000001
#define MMC_ERASE_FULE 0x00000002
#define MMC_ERASE_DISCARD 0x00000003
#define MMC_ERASE_SECURE_ERASE 0x80000000
#define MMC_ERASE_SECURE_TRIM1 0x80000001
#define MMC_ERASE_SECURE_TRIM2 0x80008000
/* Class 9: I/O mode commands */
#define MMC_FAST_IO 39
#define MMC_GO_IRQ_STATE 40
/* reserved: 41 */
/* Class 7: Lock card */
#define MMC_LOCK_UNLOCK 42
/* reserved: 43 */
/* reserved: 44 */
/* reserved: 45 */
/* reserved: 46 */
/* reserved: 47 */
/* reserved: 48 */
/* reserved: 49 */
/* reserved: 50 */
/* reserved: 51 */
/* reserved: 54 */
/* Class 8: Application specific commands */
#define MMC_APP_CMD 55
#define MMC_GEN_CMD 56
/* reserved: 57 */
/* reserved: 58 */
/* reserved: 59 */
/* reserved for mfg: 60 */
/* reserved for mfg: 61 */
/* reserved for mfg: 62 */
/* reserved for mfg: 63 */
/* Class 9: I/O cards (sd) */
#define SD_IO_RW_DIRECT 52
/* CMD52 arguments */
#define SD_ARG_CMD52_READ (0<<31)
#define SD_ARG_CMD52_WRITE (1<<31)
#define SD_ARG_CMD52_FUNC_SHIFT 28
#define SD_ARG_CMD52_FUNC_MASK 0x7
#define SD_ARG_CMD52_EXCHANGE (1<<27)
#define SD_ARG_CMD52_REG_SHIFT 9
#define SD_ARG_CMD52_REG_MASK 0x1ffff
#define SD_ARG_CMD52_DATA_SHIFT 0
#define SD_ARG_CMD52_DATA_MASK 0xff
#define SD_R5_DATA(resp) ((resp)[0] & 0xff)
#define SD_IO_RW_EXTENDED 53
/* CMD53 arguments */
#define SD_ARG_CMD53_READ (0<<31)
#define SD_ARG_CMD53_WRITE (1<<31)
#define SD_ARG_CMD53_FUNC_SHIFT 28
#define SD_ARG_CMD53_FUNC_MASK 0x7
#define SD_ARG_CMD53_BLOCK_MODE (1<<27)
#define SD_ARG_CMD53_INCREMENT (1<<26)
#define SD_ARG_CMD53_REG_SHIFT 9
#define SD_ARG_CMD53_REG_MASK 0x1ffff
#define SD_ARG_CMD53_LENGTH_SHIFT 0
#define SD_ARG_CMD53_LENGTH_MASK 0x1ff
#define SD_ARG_CMD53_LENGTH_MAX 64 /* XXX should be 511? */
/* Class 10: Switch function commands */
#define SD_SWITCH_FUNC 6
/* reserved: 34 */
/* reserved: 35 */
/* reserved: 36 */
/* reserved: 37 */
/* reserved: 50 */
/* reserved: 57 */
/* Application specific commands for SD */
#define ACMD_SET_BUS_WIDTH 6
#define ACMD_SD_STATUS 13
#define ACMD_SEND_NUM_WR_BLOCKS 22
#define ACMD_SET_WR_BLK_ERASE_COUNT 23
#define ACMD_SD_SEND_OP_COND 41
#define ACMD_SET_CLR_CARD_DETECT 42
#define ACMD_SEND_SCR 51
/*
* EXT_CSD fields
*/
#define EXT_CSD_EXT_PART_ATTR 52 /* R/W, 2 bytes */
#define EXT_CSD_ENH_START_ADDR 136 /* R/W, 4 bytes */
#define EXT_CSD_ENH_SIZE_MULT 140 /* R/W, 3 bytes */
#define EXT_CSD_GP_SIZE_MULT 143 /* R/W, 12 bytes */
#define EXT_CSD_PART_SET 155 /* R/W */
#define EXT_CSD_PART_ATTR 156 /* R/W */
#define EXT_CSD_PART_SUPPORT 160 /* RO */
#define EXT_CSD_RPMB_MULT 168 /* RO */
#define EXT_CSD_BOOT_WP_STATUS 174 /* RO */
#define EXT_CSD_ERASE_GRP_DEF 175 /* R/W */
#define EXT_CSD_PART_CONFIG 179 /* R/W */
#define EXT_CSD_BUS_WIDTH 183 /* R/W */
#define EXT_CSD_STROBE_SUPPORT 184 /* RO */
#define EXT_CSD_HS_TIMING 185 /* R/W */
#define EXT_CSD_POWER_CLASS 187 /* R/W */
#define EXT_CSD_CARD_TYPE 196 /* RO */
#define EXT_CSD_DRIVER_STRENGTH 197 /* RO */
#define EXT_CSD_REV 192 /* RO */
#define EXT_CSD_PART_SWITCH_TO 199 /* RO */
#define EXT_CSD_PWR_CL_52_195 200 /* RO */
#define EXT_CSD_PWR_CL_26_195 201 /* RO */
#define EXT_CSD_PWR_CL_52_360 202 /* RO */
#define EXT_CSD_PWR_CL_26_360 203 /* RO */
#define EXT_CSD_SEC_CNT 212 /* RO, 4 bytes */
#define EXT_CSD_HC_WP_GRP_SIZE 221 /* RO */
#define EXT_CSD_ERASE_TO_MULT 223 /* RO */
#define EXT_CSD_ERASE_GRP_SIZE 224 /* RO */
#define EXT_CSD_BOOT_SIZE_MULT 226 /* RO */
#define EXT_CSD_SEC_FEATURE_SUPPORT 231 /* RO */
#define EXT_CSD_PWR_CL_200_195 236 /* RO */
#define EXT_CSD_PWR_CL_200_360 237 /* RO */
#define EXT_CSD_PWR_CL_52_195_DDR 238 /* RO */
#define EXT_CSD_PWR_CL_52_360_DDR 239 /* RO */
#define EXT_CSD_GEN_CMD6_TIME 248 /* RO */
#define EXT_CSD_PWR_CL_200_360_DDR 253 /* RO */
/*
* EXT_CSD field definitions
*/
#define EXT_CSD_EXT_PART_ATTR_DEFAULT 0x0
#define EXT_CSD_EXT_PART_ATTR_SYSTEMCODE 0x1
#define EXT_CSD_EXT_PART_ATTR_NPERSISTENT 0x2
#define EXT_CSD_PART_SET_COMPLETED 0x01
#define EXT_CSD_PART_ATTR_ENH_USR 0x01
#define EXT_CSD_PART_ATTR_ENH_GP0 0x02
#define EXT_CSD_PART_ATTR_ENH_GP1 0x04
#define EXT_CSD_PART_ATTR_ENH_GP2 0x08
#define EXT_CSD_PART_ATTR_ENH_GP3 0x10
#define EXT_CSD_PART_ATTR_ENH_MASK 0x1f
#define EXT_CSD_PART_SUPPORT_EN 0x01
#define EXT_CSD_PART_SUPPORT_ENH_ATTR_EN 0x02
#define EXT_CSD_PART_SUPPORT_EXT_ATTR_EN 0x04
#define EXT_CSD_BOOT_WP_STATUS_BOOT0_PWR 0x01
#define EXT_CSD_BOOT_WP_STATUS_BOOT0_PERM 0x02
#define EXT_CSD_BOOT_WP_STATUS_BOOT0_MASK 0x03
#define EXT_CSD_BOOT_WP_STATUS_BOOT1_PWR 0x04
#define EXT_CSD_BOOT_WP_STATUS_BOOT1_PERM 0x08
#define EXT_CSD_BOOT_WP_STATUS_BOOT1_MASK 0x0c
#define EXT_CSD_ERASE_GRP_DEF_EN 0x01
#define EXT_CSD_PART_CONFIG_ACC_DEFAULT 0x00
#define EXT_CSD_PART_CONFIG_ACC_BOOT0 0x01
#define EXT_CSD_PART_CONFIG_ACC_BOOT1 0x02
#define EXT_CSD_PART_CONFIG_ACC_RPMB 0x03
#define EXT_CSD_PART_CONFIG_ACC_GP0 0x04
#define EXT_CSD_PART_CONFIG_ACC_GP1 0x05
#define EXT_CSD_PART_CONFIG_ACC_GP2 0x06
#define EXT_CSD_PART_CONFIG_ACC_GP3 0x07
#define EXT_CSD_PART_CONFIG_ACC_MASK 0x07
#define EXT_CSD_PART_CONFIG_BOOT0 0x08
#define EXT_CSD_PART_CONFIG_BOOT1 0x10
#define EXT_CSD_PART_CONFIG_BOOT_USR 0x38
#define EXT_CSD_PART_CONFIG_BOOT_MASK 0x38
#define EXT_CSD_PART_CONFIG_BOOT_ACK 0x40
#define EXT_CSD_CMD_SET_NORMAL 1
#define EXT_CSD_CMD_SET_SECURE 2
#define EXT_CSD_CMD_SET_CPSECURE 4
#define EXT_CSD_HS_TIMING_BC 0
#define EXT_CSD_HS_TIMING_HS 1
#define EXT_CSD_HS_TIMING_HS200 2
#define EXT_CSD_HS_TIMING_HS400 3
#define EXT_CSD_HS_TIMING_DRV_STR_SHIFT 4
#define EXT_CSD_POWER_CLASS_8BIT_MASK 0xf0
#define EXT_CSD_POWER_CLASS_8BIT_SHIFT 4
#define EXT_CSD_POWER_CLASS_4BIT_MASK 0x0f
#define EXT_CSD_POWER_CLASS_4BIT_SHIFT 0
#define EXT_CSD_CARD_TYPE_HS_26 0x0001
#define EXT_CSD_CARD_TYPE_HS_52 0x0002
#define EXT_CSD_CARD_TYPE_DDR_52_1_8V 0x0004
#define EXT_CSD_CARD_TYPE_DDR_52_1_2V 0x0008
#define EXT_CSD_CARD_TYPE_HS200_1_8V 0x0010
#define EXT_CSD_CARD_TYPE_HS200_1_2V 0x0020
#define EXT_CSD_CARD_TYPE_HS400_1_8V 0x0040
#define EXT_CSD_CARD_TYPE_HS400_1_2V 0x0080
#define EXT_CSD_BUS_WIDTH_1 0
#define EXT_CSD_BUS_WIDTH_4 1
#define EXT_CSD_BUS_WIDTH_8 2
#define EXT_CSD_BUS_WIDTH_4_DDR 5
#define EXT_CSD_BUS_WIDTH_8_DDR 6
#define EXT_CSD_BUS_WIDTH_ES 0x80
#define EXT_CSD_STROBE_SUPPORT_EN 0x01
#define EXT_CSD_SEC_FEATURE_SUPPORT_ER_EN 0x01
#define EXT_CSD_SEC_FEATURE_SUPPORT_BD_BLK_EN 0x04
#define EXT_CSD_SEC_FEATURE_SUPPORT_GB_CL_EN 0x10
#define EXT_CSD_SEC_FEATURE_SUPPORT_SANITIZE 0x40
/*
* Vendor specific EXT_CSD fields
*/
/* SanDisk iNAND */
#define EXT_CSD_INAND_CMD38 113
#define EXT_CSD_INAND_CMD38_ERASE 0x00
#define EXT_CSD_INAND_CMD38_TRIM 0x01
#define EXT_CSD_INAND_CMD38_SECURE_ERASE 0x80
#define EXT_CSD_INAND_CMD38_SECURE_TRIM1 0x81
#define EXT_CSD_INAND_CMD38_SECURE_TRIM2 0x82
#define MMC_TYPE_HS_26_MAX 26000000
#define MMC_TYPE_HS_52_MAX 52000000
#define MMC_TYPE_DDR52_MAX 52000000
#define MMC_TYPE_HS200_HS400ES_MAX 200000000
/*
* SD bus widths
*/
#define SD_BUS_WIDTH_1 0
#define SD_BUS_WIDTH_4 2
/*
* SD Switch
*/
#define SD_SWITCH_MODE_CHECK 0
#define SD_SWITCH_MODE_SET 1
#define SD_SWITCH_GROUP1 0
#define SD_SWITCH_NORMAL_MODE 0
#define SD_SWITCH_HS_MODE 1
#define SD_SWITCH_SDR50_MODE 2
#define SD_SWITCH_SDR104_MODE 3
#define SD_SWITCH_DDR50 4
#define SD_SWITCH_NOCHANGE 0xF
#define SD_CLR_CARD_DETECT 0
#define SD_SET_CARD_DETECT 1
#define SD_HS_MAX 50000000
#define SD_DDR50_MAX 50000000
#define SD_SDR12_MAX 25000000
#define SD_SDR25_MAX 50000000
#define SD_SDR50_MAX 100000000
#define SD_SDR104_MAX 208000000
/* Specifications require 400 kHz max. during ID phase. */
#define SD_MMC_CARD_ID_FREQUENCY 400000
/*
* SDIO Direct & Extended I/O
*/
#define SD_IO_RW_WR (1u << 31)
#define SD_IO_RW_FUNC(x) (((x) & 0x7) << 28)
#define SD_IO_RW_RAW (1u << 27)
#define SD_IO_RW_INCR (1u << 26)
#define SD_IO_RW_ADR(x) (((x) & 0x1FFFF) << 9)
#define SD_IO_RW_DAT(x) (((x) & 0xFF) << 0)
#define SD_IO_RW_LEN(x) (((x) & 0xFF) << 0)
#define SD_IOE_RW_LEN(x) (((x) & 0x1FF) << 0)
#define SD_IOE_RW_BLK (1u << 27)
/* Card Common Control Registers (CCCR) */
#define SD_IO_CCCR_START 0x00000
#define SD_IO_CCCR_SIZE 0x100
#define SD_IO_CCCR_FN_ENABLE 0x02
#define SD_IO_CCCR_FN_READY 0x03
#define SD_IO_CCCR_INT_ENABLE 0x04
#define SD_IO_CCCR_INT_PENDING 0x05
#define SD_IO_CCCR_CTL 0x06
#define CCCR_CTL_RES (1<<3)
#define SD_IO_CCCR_BUS_WIDTH 0x07
#define CCCR_BUS_WIDTH_4 (1<<1)
#define CCCR_BUS_WIDTH_1 (1<<0)
#define SD_IO_CCCR_CARDCAP 0x08
#define SD_IO_CCCR_CISPTR 0x09 /* XXX 9-10, 10-11, or 9-12 */
/* Function Basic Registers (FBR) */
#define SD_IO_FBR_START 0x00100
#define SD_IO_FBR_SIZE 0x00700
/* Card Information Structure (CIS) */
#define SD_IO_CIS_START 0x01000
#define SD_IO_CIS_SIZE 0x17000
/* CIS tuple codes (based on PC Card 16) */
#define SD_IO_CISTPL_VERS_1 0x15
#define SD_IO_CISTPL_MANFID 0x20
#define SD_IO_CISTPL_FUNCID 0x21
#define SD_IO_CISTPL_FUNCE 0x22
#define SD_IO_CISTPL_END 0xff
/* CISTPL_FUNCID codes */
/* OpenBSD incorrectly defines 0x0c as FUNCTION_WLAN */
/* #define SDMMC_FUNCTION_WLAN 0x0c */
/* OCR bits */
/*
* in SD 2.0 spec, bits 8-14 are now marked reserved
* Low voltage in SD2.0 spec is bit 7, TBD voltage
* Low voltage in MC 3.31 spec is bit 7, 1.65-1.95V
* Specs prior to MMC 3.31 defined bits 0-7 as voltages down to 1.5V.
* 3.31 redefined them to be reserved and also said that cards had to
* support the 2.7-3.6V and fixed the OCR to be 0xfff8000 for high voltage
* cards. MMC 4.0 says that a dual voltage card responds with 0xfff8080.
* Looks like the fine-grained control of the voltage tolerance ranges
* was abandoned.
*
* The MMC_OCR_CCS appears to be valid for only SD cards.
*/
#define MMC_OCR_VOLTAGE 0x3fffffffU /* Vdd Voltage mask */
#define MMC_OCR_LOW_VOLTAGE (1u << 7) /* Low Voltage Range -- tbd */
#define MMC_OCR_MIN_VOLTAGE_SHIFT 7
#define MMC_OCR_200_210 (1U << 8) /* Vdd voltage 2.00 ~ 2.10 */
#define MMC_OCR_210_220 (1U << 9) /* Vdd voltage 2.10 ~ 2.20 */
#define MMC_OCR_220_230 (1U << 10) /* Vdd voltage 2.20 ~ 2.30 */
#define MMC_OCR_230_240 (1U << 11) /* Vdd voltage 2.30 ~ 2.40 */
#define MMC_OCR_240_250 (1U << 12) /* Vdd voltage 2.40 ~ 2.50 */
#define MMC_OCR_250_260 (1U << 13) /* Vdd voltage 2.50 ~ 2.60 */
#define MMC_OCR_260_270 (1U << 14) /* Vdd voltage 2.60 ~ 2.70 */
#define MMC_OCR_270_280 (1U << 15) /* Vdd voltage 2.70 ~ 2.80 */
#define MMC_OCR_280_290 (1U << 16) /* Vdd voltage 2.80 ~ 2.90 */
#define MMC_OCR_290_300 (1U << 17) /* Vdd voltage 2.90 ~ 3.00 */
#define MMC_OCR_300_310 (1U << 18) /* Vdd voltage 3.00 ~ 3.10 */
#define MMC_OCR_310_320 (1U << 19) /* Vdd voltage 3.10 ~ 3.20 */
#define MMC_OCR_320_330 (1U << 20) /* Vdd voltage 3.20 ~ 3.30 */
#define MMC_OCR_330_340 (1U << 21) /* Vdd voltage 3.30 ~ 3.40 */
#define MMC_OCR_340_350 (1U << 22) /* Vdd voltage 3.40 ~ 3.50 */
#define MMC_OCR_350_360 (1U << 23) /* Vdd voltage 3.50 ~ 3.60 */
#define MMC_OCR_MAX_VOLTAGE_SHIFT 23
#define MMC_OCR_S18R (1U << 24) /* Switching to 1.8 V requested (SD) */
#define MMC_OCR_S18A MMC_OCR_S18R /* Switching to 1.8 V accepted (SD) */
#define MMC_OCR_XPC (1U << 28) /* SDXC Power Control */
#define MMC_OCR_ACCESS_MODE_BYTE (0U << 29) /* Access Mode Byte (MMC) */
#define MMC_OCR_ACCESS_MODE_SECT (1U << 29) /* Access Mode Sector (MMC) */
#define MMC_OCR_ACCESS_MODE_MASK (3U << 29)
#define MMC_OCR_CCS (1u << 30) /* Card Capacity status (SD vs SDHC) */
#define MMC_OCR_CARD_BUSY (1U << 31) /* Card Power up status */
/* CSD -- decoded structure */
struct mmc_cid {
uint32_t mid;
char pnm[8];
uint32_t psn;
uint16_t oid;
uint16_t mdt_year;
uint8_t mdt_month;
uint8_t prv;
uint8_t fwrev;
};
struct mmc_csd {
uint8_t csd_structure;
uint8_t spec_vers;
uint16_t ccc;
uint16_t tacc;
uint32_t nsac;
uint32_t r2w_factor;
uint32_t tran_speed;
uint32_t read_bl_len;
uint32_t write_bl_len;
uint32_t vdd_r_curr_min;
uint32_t vdd_r_curr_max;
uint32_t vdd_w_curr_min;
uint32_t vdd_w_curr_max;
uint32_t wp_grp_size;
uint32_t erase_sector;
uint64_t capacity;
unsigned int read_bl_partial:1,
read_blk_misalign:1,
write_bl_partial:1,
write_blk_misalign:1,
dsr_imp:1,
erase_blk_en:1,
wp_grp_enable:1;
};
struct mmc_scr {
unsigned char sda_vsn;
unsigned char bus_widths;
#define SD_SCR_BUS_WIDTH_1 (1 << 0)
#define SD_SCR_BUS_WIDTH_4 (1 << 2)
};
struct mmc_sd_status {
uint8_t bus_width;
uint8_t secured_mode;
uint16_t card_type;
uint16_t prot_area;
uint8_t speed_class;
uint8_t perf_move;
uint8_t au_size;
uint16_t erase_size;
uint8_t erase_timeout;
uint8_t erase_offset;
};
struct mmc_quirk {
uint32_t mid;
#define MMC_QUIRK_MID_ANY ((uint32_t)-1)
uint16_t oid;
#define MMC_QUIRK_OID_ANY ((uint16_t)-1)
const char *pnm;
uint32_t quirks;
#define MMC_QUIRK_INAND_CMD38 0x0001
#define MMC_QUIRK_BROKEN_TRIM 0x0002
};
#define MMC_QUIRKS_FMT "\020" "\001INAND_CMD38" "\002BROKEN_TRIM"
/*
* Various MMC/SD constants
*/
#define MMC_BOOT_RPMB_BLOCK_SIZE (128 * 1024)
#define MMC_EXTCSD_SIZE 512
#define MMC_PART_GP_MAX 4
#define MMC_PART_MAX 8
#define MMC_TUNING_MAX 64 /* Maximum tuning iterations */
#define MMC_TUNING_LEN 64 /* Size of tuning data */
#define MMC_TUNING_LEN_HS200 128 /* Size of tuning data in HS200 mode */
/*
* Older versions of the MMC standard had a variable sector size. However,
* I've been able to find no old MMC or SD cards that have a non 512
* byte sector size anywhere, so we assume that such cards are very rare
* and only note their existence in passing here...
*/
#define MMC_SECTOR_SIZE 512
#endif /* DEV_MMCREG_H */
Now, look at SD_IO_RW_DIRECT its a class 9 command type for directly read and write in SDIO card case. Then, there is SD_IO_RW_FUNC ( #define SD_IO_RW_FUNC(x) (((x) & 0x7) << 28) ) it takes a uint8 type value extracts it's 7th bit and shift that bit to 28 position. then, SD_IO_RW_ADR ( #define SD_IO_RW_ADR(x) (((x) & 0x1FFFF) << 9) ) takes a 32 bit address takes it's first 16 its shift it by 9 bit i.e [25:9] and sends it to SD card to take set these 16 bits as it's RCA. SD_IO_RW_WR sets 1 at 31 position which indicates write operation. SD_IO_RW_RAW sets 1 at 27 position indicating raw data to be exchanged. SD_IO_RW_DAT takes 8 bit of data and put it in beginning of the packet . #define MMC_RSP_R5 (MMC_RSP_PRESENT | MMC_RSP_CRC | MMC_RSP_OPCODE) MMC_RSP_R5 sets the CRC and opcode of the command. MMC_CMD_AC shows that it's an address only command no data will be transferred.
sdio_parse_mmcio_rw_direct function is pretty straight forward, it's used to parse the response header indicating any CRC error or any other error reported by mmc card.
mmc_xpt.c
First two structure and character array are just a list of different functions that can be performed on mmc and SDIO card as of now.
Then we have mmc_dev_async function which as explained in previous post, is used to handle any asynchronous interrupt from CAM bus, in case of hot plug/hot unplug. It detects the device, and registers it accordingly on CAM bus.
+static void
+mmc_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
+ struct cam_ed *device, void *async_arg)
+{
+
+ printf("mmc_dev_async(async_code=0x%x, path_id=%d, target_id=%x, lun_id=%" SCNx64 "\n",
+ async_code,
+ bus->path_id,
+ target->target_id,
+ device->lun_id);
+ /*
+ * We only need to handle events for real devices.
+ */
+ if (target->target_id == CAM_TARGET_WILDCARD
+ || device->lun_id == CAM_LUN_WILDCARD)
+ return;
+
+ if (async_code == AC_LOST_DEVICE) {
+ if ((device->flags & CAM_DEV_UNCONFIGURED) == 0) {
+ printf("AC_LOST_DEVICE -> set to unconfigured\n");
+ device->flags |= CAM_DEV_UNCONFIGURED;
+ xpt_release_device(device);
+ } else {
+ printf("AC_LOST_DEVICE on unconfigured device\n");
+ }
+ } else if (async_code == AC_FOUND_DEVICE) {
+ printf("Got AC_FOUND_DEVICE -- whatever...\n");
+ } else if (async_code == AC_PATH_REGISTERED) {
+ printf("Got AC_PATH_REGISTERED -- whatever...\n");
+ } else if (async_code == AC_PATH_DEREGISTERED ) {
+ printf("Got AC_PATH_DEREGISTERED -- whatever...\n");
+ } else
+ panic("Unknown async code\n");
+}
Notice, here the keyword 'LUN' it refers to Logical Unit Number a storage device has. So, CAM_TARGET_WILDCARD and CAM_LUN_WILDCARD makes sure that device is a valid storage/IO device.
mmc_scan_lun basically check the Logical Unit Numbers of the device. CAM_LUN_WILDCARD only checks whether LUN == 0 or not. Each device has LUN = 0 even if it has multiple logical units , it's a bit confusing, but it looks like device registers other LUNs only after one of it's LUN gets attached. Source: here
mmc_action() is pretty straightforward. It calls xpt_action() after handling several standard cases. It also calls mmc_scan_lun if needed.
+static void
+mmc_announce_periph(struct cam_periph *periph)
+{
+ struct ccb_pathinq cpi;
+ struct ccb_trans_settings cts;
+ struct cam_path *path = periph->path;
+
+ cam_periph_assert(periph, MA_OWNED);
+
+ CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
+ ("mmc_announce_periph: called\n"));
+
+ xpt_setup_ccb(&cts.ccb_h, path, CAM_PRIORITY_NORMAL);
+ cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
+ cts.type = CTS_TYPE_CURRENT_SETTINGS;
+ xpt_action((union ccb*)&cts);
+ if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)
+ return;
+ xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
+ cpi.ccb_h.func_code = XPT_PATH_INQ;
+ xpt_action((union ccb *)&cpi);
+ printf("XPT info: CLK %04X, ...\n", cts.proto_specific.mmc.ios.clock);
+}
+
mmc_announce_periph is called upon confirmation of connection to any new device. notice that it creates a CCB and then initializes it with xpt_action.
Then, mmcprobe_register registers a new device on the CAM bus. only after registration, it can be associated with a CCB.
Next, important function is mmcprobe_start
+static void
+mmcprobe_start(struct cam_periph *periph, union ccb *start_ccb)
+{
+ mmcprobe_softc *softc;
+ struct cam_path *path;
+ struct ccb_mmcio *mmcio;
+ struct mtx *p_mtx = cam_periph_mtx(periph);
+ struct ccb_trans_settings_mmc *cts;
+
+ CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_PROBE, ("mmcprobe_start\n"));
+ softc = (mmcprobe_softc *)periph->softc;
+ path = start_ccb->ccb_h.path;
+ mmcio = &start_ccb->mmcio;
+ cts = &start_ccb->cts.proto_specific.mmc;
+ struct mmc_params *mmcp = &path->device->mmc_ident_data;
+
+ memset(&mmcio->cmd, 0, sizeof(struct mmc_command));
+
+ if (softc->restart) {
+ softc->restart = 0;
+ if (path->device->flags & CAM_DEV_UNCONFIGURED)
+ softc->action = PROBE_RESET;
+ else
+ softc->action = PROBE_IDENTIFY;
+
+ }
+
+ /* Here is the place where the identify fun begins */
+ switch (softc->action) {
+ case PROBE_RESET:
+ /* FALLTHROUGH */
+ case PROBE_IDENTIFY:
+ init_standard_ccb(start_ccb, XPT_PATH_INQ);
+ xpt_action(start_ccb);
+
+ CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_PROBE, ("Start with PROBE_RESET\n"));
+ init_standard_ccb(start_ccb, XPT_SET_TRAN_SETTINGS);
+ cts->ios.power_mode = power_off;
+ cts->ios_valid = MMC_PM;
+ xpt_action(start_ccb);
+ mtx_sleep(periph, p_mtx, 0, "mmcios", 100);
+
+ /* mmc_power_up */
+ /* Get the host OCR */
+ init_standard_ccb(start_ccb, XPT_GET_TRAN_SETTINGS);
+ xpt_action(start_ccb);
+
+ uint32_t hv = mmc_highest_voltage(cts->host_ocr);
+ init_standard_ccb(start_ccb, XPT_SET_TRAN_SETTINGS);
+ cts->ios.vdd = hv;
+ cts->ios.bus_mode = opendrain;
+ cts->ios.chip_select = cs_dontcare;
+ cts->ios.power_mode = power_up;
+ cts->ios.bus_width = bus_width_1;
+ cts->ios.clock = 0;
+ cts->ios_valid = MMC_VDD | MMC_PM | MMC_BM |
+ MMC_CS | MMC_BW | MMC_CLK;
+ xpt_action(start_ccb);
+ mtx_sleep(periph, p_mtx, 0, "mmcios", 100);
+
+ init_standard_ccb(start_ccb, XPT_SET_TRAN_SETTINGS);
+ cts->ios.power_mode = power_on;
+ cts->ios.clock = CARD_ID_FREQUENCY;
+ cts->ios.timing = bus_timing_normal;
+ cts->ios_valid = MMC_PM | MMC_CLK | MMC_BT;
+ xpt_action(start_ccb);
+ mtx_sleep(periph, p_mtx, 0, "mmcios", 100);
+ /* End for mmc_power_on */
+
+ /* Begin mmc_idle_cards() */
+ init_standard_ccb(start_ccb, XPT_SET_TRAN_SETTINGS);
+ cts->ios.chip_select = cs_high;
+ cts->ios_valid = MMC_CS;
+ xpt_action(start_ccb);
+ mtx_sleep(periph, p_mtx, 0, "mmcios", 1);
+
+ CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_PROBE, ("Send first XPT_MMC_IO\n"));
+ init_standard_ccb(start_ccb, XPT_MMC_IO);
+ mmcio->cmd.opcode = MMC_GO_IDLE_STATE; /* CMD 0 */
+ mmcio->cmd.arg = 0;
+ mmcio->cmd.flags = MMC_RSP_NONE | MMC_CMD_BC;
+ mmcio->cmd.data = NULL;
+ mmcio->stop.opcode = 0;
+
+ /* XXX Reset I/O portion as well */
+ break;
+ case PROBE_SDIO_RESET:
+ CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_PROBE,
+ ("Start with PROBE_SDIO_RESET\n"));
+ uint32_t mmc_arg = SD_IO_RW_ADR(SD_IO_CCCR_CTL)
+ | SD_IO_RW_DAT(CCCR_CTL_RES) | SD_IO_RW_WR | SD_IO_RW_RAW;
+ cam_fill_mmcio(&start_ccb->mmcio,
+ /*retries*/ 0,
+ /*cbfcnp*/ mmcprobe_done,
+ /*flags*/ CAM_DIR_NONE,
+ /*mmc_opcode*/ SD_IO_RW_DIRECT,
+ /*mmc_arg*/ mmc_arg,
+ /*mmc_flags*/ MMC_RSP_R5 | MMC_CMD_AC,
+ /*mmc_data*/ NULL,
+ /*timeout*/ 1000);
+ break;
+ case PROBE_SEND_IF_COND:
+ CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_PROBE,
+ ("Start with PROBE_SEND_IF_COND\n"));
+ init_standard_ccb(start_ccb, XPT_MMC_IO);
+ mmcio->cmd.opcode = SD_SEND_IF_COND; /* CMD 8 */
+ mmcio->cmd.arg = (1 << 8) + 0xAA;
+ mmcio->cmd.flags = MMC_RSP_R7 | MMC_CMD_BCR;
+ mmcio->stop.opcode = 0;
+ break;
+
+ case PROBE_SDIO_INIT:
+ CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_PROBE,
+ ("Start with PROBE_SDIO_INIT\n"));
+ init_standard_ccb(start_ccb, XPT_MMC_IO);
+ mmcio->cmd.opcode = IO_SEND_OP_COND; /* CMD 5 */
+ mmcio->cmd.arg = mmcp->io_ocr;
+ mmcio->cmd.flags = MMC_RSP_R4;
+ mmcio->stop.opcode = 0;
+ break;
+
+ case PROBE_MMC_INIT:
+ CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_PROBE,
+ ("Start with PROBE_MMC_INIT\n"));
+ init_standard_ccb(start_ccb, XPT_MMC_IO);
+ mmcio->cmd.opcode = MMC_SEND_OP_COND; /* CMD 1 */
+ mmcio->cmd.arg = MMC_OCR_CCS | mmcp->card_ocr; /* CCS + ocr */;
+ mmcio->cmd.flags = MMC_RSP_R3 | MMC_CMD_BCR;
+ mmcio->stop.opcode = 0;
+ break;
+
+ case PROBE_SEND_APP_OP_COND:
+ init_standard_ccb(start_ccb, XPT_MMC_IO);
+ if (softc->flags & PROBE_FLAG_ACMD_SENT) {
+ mmcio->cmd.opcode = ACMD_SD_SEND_OP_COND; /* CMD 41 */
+ /*
+ * We set CCS bit because we do support SDHC cards.
+ * XXX: Don't set CCS if no response to CMD8.
+ */
+ mmcio->cmd.arg = MMC_OCR_CCS | mmcp->card_ocr; /* CCS + ocr */
+ mmcio->cmd.flags = MMC_RSP_R3 | MMC_CMD_BCR;
+ } else {
+ mmcio->cmd.opcode = MMC_APP_CMD; /* CMD 55 */
+ mmcio->cmd.arg = 0; /* rca << 16 */
+ mmcio->cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
+ }
+ mmcio->stop.opcode = 0;
+ break;
+
+ case PROBE_GET_CID: /* XXX move to mmc_da */
+ init_standard_ccb(start_ccb, XPT_MMC_IO);
+ mmcio->cmd.opcode = MMC_ALL_SEND_CID;
+ mmcio->cmd.arg = 0;
+ mmcio->cmd.flags = MMC_RSP_R2 | MMC_CMD_BCR;
+ mmcio->stop.opcode = 0;
+ break;
+
+ case PROBE_SEND_RELATIVE_ADDR:
+ init_standard_ccb(start_ccb, XPT_MMC_IO);
+ mmcio->cmd.opcode = SD_SEND_RELATIVE_ADDR;
+ mmcio->cmd.arg = 0;
+ mmcio->cmd.flags = MMC_RSP_R6 | MMC_CMD_BCR;
+ mmcio->stop.opcode = 0;
+ break;
+ case PROBE_SELECT_CARD:
+ init_standard_ccb(start_ccb, XPT_MMC_IO);
+ mmcio->cmd.opcode = MMC_SELECT_CARD;
+ mmcio->cmd.arg = (uint32_t)path->device->mmc_ident_data.card_rca << 16;
+ mmcio->cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
+ mmcio->stop.opcode = 0;
+ break;
+ case PROBE_GET_CSD: /* XXX move to mmc_da */
+ init_standard_ccb(start_ccb, XPT_MMC_IO);
+ mmcio->cmd.opcode = MMC_SEND_CSD;
+ mmcio->cmd.arg = (uint32_t)path->device->mmc_ident_data.card_rca << 16;
+ mmcio->cmd.flags = MMC_RSP_R2 | MMC_CMD_BCR;
+ mmcio->stop.opcode = 0;
+ break;
+ case PROBE_DONE:
+ CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_PROBE, ("Start with PROBE_DONE\n"));
+ init_standard_ccb(start_ccb, XPT_SET_TRAN_SETTINGS);
+ cts->ios.bus_mode = pushpull;
+ cts->ios_valid = MMC_BM;
+ xpt_action(start_ccb);
+ return;
+ /* NOTREACHED */
+ break;
+ case PROBE_INVALID:
+ break;
+ default:
+ CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_PROBE, ("probestart: invalid action state 0x%x\n", softc->action));
+ panic("default: case in mmc_probe_start()");
+ }
+
+ start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
+ xpt_action(start_ccb);
+}
Notice the switch case statement here, which converts a I/O command to it's SCSI equivalent. That is with just the name of the command it associates all the register value corresponding to it.
Few other supporting files are left. I'll update this post with there details as well
References:
- http://asf.atmel.com/docs/latest/common.components.wifi.winc1500.http_downloader_example.samd21_xplained_pro/html/group__sd__mmc__protocol.html
- http://www.analog.com/media/en/technical-documentation/application-notes/EE335_rev1.pdf
- https://electronics.stackexchange.com/questions/28091/push-pull-open-drain-pull-up-pull-down
Comments
Post a Comment